Dynamic Modelling and Vibration Control of a Planar Parallel Manipulator with Structurally Flexible Linkages
نویسندگان
چکیده
A parallel manipulator provides an alternative design to serial manipulators, and can be found in many applications such as mining machines (Arai et al., 1991). Through the design of active joints such that actuators are fixed to the manipulator base, the mass of moving components of the parallel manipulator is greatly reduced, and high speed and high acceleration performance may be achieved. Parallel manipulators, comprised of closed-loop chains due to multiple linkages of the parallel structure, also provide high mechanical rigidity, but adversely exhibit smaller workspace and associated singularities. Considerable research has focused on kinematic analysis and singularity characterization of these devices (Gosselin & Angeles, 1990, Merlet, 1996). Planar parallel manipulators typically consist of three closed chains and a moving platform. According to the arrangement of their joints in a chain, these mechanisms are classified as PRR, RRR etc. where P denotes a prismatic joint and R denotes a revolute joint respectively. An assembly industry, such as the electronic fabrication, demands high-speed, high acceleration placement manipulators, with corresponding lightweight linkages, hence these linkages deform under high inertia forces leading to unwanted vibrations. Moreover, such multiple flexible linkages of a parallel manipulator propagate their oscillatory motions to the moving platform where a working gripper is located. Therefore, such vibration must be damped quickly to reduce settling time of the manipulator platform position and orientation. A number of approaches to develop the dynamic model of parallel manipulators with structural flexibility have been presented in the literature(Fattah et al., 1995, Toyama et al. 2001), but relatively few works related to vibration reduction of a parallel manipulator have been published. Kozak (Kozak et al., 2004) linearized the dynamic equations of a two-degree-of-freedom parallel manipulator locally, and applied an input shaping technique to reduce residual vibrations through modification of the reference command given to the system. Kang (Kang et al., 2002) modeled a planar parallel manipulator using the assumed modes method, and presented a two-time scale controller for linkage vibration attenuation of the planar parallel manipulator. Since both the input shaping technique and the two-time scale control scheme, applied to parallel manipulators,
منابع مشابه
Dynamic modeling of structurally-flexible planar parallel manipulator
This paper presents a dynamic model of a planar parallel manipulator including structural flexibility of several linkages. The equations of motion are formulated using the Lagrangian equations of the first type and Lagrangian multipliers are introduced to represent the geometry of multiple closed loop chains. Then, an active damping approach using a PZT actuator is described to attenuate struct...
متن کاملDesign and Dynamic Modeling of Planar Parallel Micro-Positioning Platform Mechanism with Flexible Links Based on Euler Bernoulli Beam Theory
This paper presents the dynamic modeling and design of micro motion compliant parallel mechanism with flexible intermediate links and rigid moving platform. Modeling of mechanism is described with closed kinematic loops and the dynamic equations are derived using Lagrange multipliers and Kane’s methods. Euler-Bernoulli beam theory is considered for modeling the intermediate flexible link. Based...
متن کامل3-RPS Parallel Manipulator Dynamical Modelling and Control Based on SMC and FL Methods
In this paper, a dynamical model-based SMC (Sliding Mode Control) is proposed fortrajectory tracking of a 3-RPS (Revolute, Prismatic, Spherical) parallel manipulator. With ignoring smallinertial effects of all legs and joints compared with those of the end-effector of 3-RPS, the dynamical model ofthe manipulator is developed based on Lagrange method. By removing the unknown Lagrange multipliers...
متن کاملHybrid Concepts of the Control and Anti-Control of Flexible Joint Manipulator
This paper presents a Gaussian radial basis function neural network based on sliding mode control for trajectory tracking and vibration control of a flexible joint manipulator. To study the effectiveness of the controllers, designed controller is developed for tip angular position control of a flexible joint manipulator. The adaptation laws of designed controller are obtained based on sliding m...
متن کاملStudy on Piezoelectric Actuators in Vibration Control of a Planar Parallel Manipulator
This paper presents a new approach for the use of piezoelectric materials, PVDF and PZT, for vibration attenuation of a planar parallel manipulator. Since lightweight linkages of parallel manipulators deform under high acceleration/deceleration, such motion induced vibration would have to be damped quickly to reduce settling time of the platform position. An active damping controller is develop...
متن کامل